Dept. of Civil \&	Fracture Mechanics	2018 Fall
Environmental	Term Project	Yonsei University
Engineering		Prof. Jang-Ho Kim

From fracture tests on concrete specimens of different sizes peak loads have been recorded. The basic material properties known prior to these tests are :

```
Young's modulus \(=4.5 \times 10^{6} \mathrm{psi}\)
Tensile strength, \(\mathrm{f}_{\mathrm{t}}^{\prime}=450\) psi \(\left(=\mathrm{f}_{\mathrm{u}}\right)\)
Maximum aggregate size, \(\mathrm{d}_{\mathrm{a}}=0.5 \mathrm{in}\)., Unit weight \(=145 \mathrm{pcf}\).
```

From the given peak loads P_{u} calculate σ_{N} for each specimen. Obtain the parameters, B and d_{0}, of the size effect law from linear regression analysis. Compute the values of fracture energy G_{f} and the effective length of the fracture process zone c_{f}. Determine brittleness number β for each size. Plot the size effect law along with the LEFM and strength criteria. Using the values of G_{f} and c_{f}, the R -curve can be formulated on the basis of size effect. Compute the load versus load-line deformation response of the three sizes of specimens. Check if the peak loads thus predicted are close th the test data. From the area under the load-deformation curves of each size find G_{w}, the fracture energy from the RILEM method.

Note : (1) Assume plane stress conditions.
(2) Take $\mathrm{C}_{\mathrm{n}}=1, \sigma_{\mathrm{N}}=\mathrm{P}_{\mathrm{u}} / \mathrm{bd}$

Results should include :
Values for B, d_{0}, G_{f} and c_{f}.
Table showing $\mathrm{P}_{\mathrm{u}}, \sigma_{\mathrm{N}}$ and $\left(\mathrm{f}_{\mathrm{u}} / \sigma_{\mathrm{N}}\right)^{2}$ for each specimen.
Table showing predicted peak loads and peak deformations, area under load-deformation curve, $\beta, \mathrm{G}_{\mathrm{w}}$ and $\mathrm{G}_{\mathrm{w}} / \mathrm{G}_{\mathrm{f}}$ for each size.
Plots of (1) load-deformation diagrams of the three sizes of specimens together,
(2) linear regression analysis $\left\{\mathrm{X}=\mathrm{d}, \mathrm{Y}=\left(\mathrm{f}_{\mathrm{u}} / \sigma_{\mathrm{N}}\right)^{2}\right\}$, (3) Size effect law along with the strength and LEFM criteria $\left\{\mathrm{X}=\mathrm{d} / \mathrm{d}_{0}, \mathrm{Y}=\sigma_{\mathrm{N}} / \mathrm{Bf} \mathrm{f}_{\mathrm{u}}\right.$ both axes logarithmic $\}$ and (4) G_{w} / G_{f} versus specimen size, d.

Relevant Equations

Size Effect Law : $\quad \sigma_{N}=c_{n}\left(\frac{E G_{f}}{g^{\prime}\left(\alpha_{0}\right) c_{f}+g\left(\alpha_{0}\right) d}\right)^{1 / 2}=\frac{B f_{u}}{\sqrt{1+\beta}}, \quad \beta=\frac{d}{d_{0}}$

$$
\mathrm{E}^{\prime}=\mathrm{E} \text { for plane stress and } \mathrm{E}^{\prime}=\mathrm{E} /\left(1-\nu^{2}\right) \text { for plane strain. }
$$

Linear Regression : $\quad Y=A X+C, X=d, \quad Y=\left(f_{u} / \sigma_{N}\right)^{2}, B=1 / \sqrt{C}$, and $d_{0}=C / A$.

$$
\begin{aligned}
& G_{f}=\frac{B^{2} f_{u}^{2}}{c_{n}^{2} E} d_{0} g\left(\alpha_{0}\right), \quad c_{f}=\frac{d_{0} g\left(\alpha_{0}\right)}{g^{\prime}\left(\alpha_{0}\right)}, \quad f(\alpha)=\frac{K_{I} b \sqrt{d}}{P} \\
& g(\alpha)=\left\{f(\alpha)^{2}\right\}, \quad g^{\prime}(\alpha)=\partial g(\alpha) / \partial \alpha .
\end{aligned}
$$

R-curve : $\quad R(c)=G_{f} \frac{g^{\prime}(\alpha)}{g^{\prime}\left(\alpha_{0}\right)} \frac{c}{c_{f,}} \quad \frac{c}{c_{f}}=\frac{g^{\prime}\left(\alpha_{0}\right)}{g\left(\alpha_{0}\right)}\left(\frac{g(\alpha)}{g^{\prime}(\alpha)}-\alpha+\alpha_{0}\right)$

Test Data

Specimen	Data to be analyzed by	Size, d (in)	Peak Loads, P_{u} (lbs)
3-point bend$\begin{gathered} \mathrm{d}=\mathrm{b}, \mathrm{~b}=\mathrm{t}, \\ \mathrm{a}=\mathrm{A}, \mathrm{~s} / \mathrm{b}=4, \\ \mathrm{a}_{0}=0.4, \mathrm{~b}=1.5 \mathrm{in} \end{gathered}$	Tuguldur 정한윤	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 125,129,130 \\ & 208,205,210 \\ & 321,317,320 \end{aligned}$
	이선민	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{array}{ll} 155, & 159, \\ 245, & 249, \\ 377, & 380, \\ 381 \end{array}$
	이후범 Mohammad	$\begin{gathered} 5.0 \\ 10.0 \\ 20.0 \end{gathered}$	$\begin{aligned} & 285,287,230 \\ & 430,433,431 \\ & 630,625,629 \end{aligned}$
Compact Tension$\begin{gathered} \mathrm{d}=\mathrm{W}, \mathrm{~b}=\mathrm{t}, \\ \mathrm{a}_{0}=0.3, \mathrm{~b}=1.5 \mathrm{in} \end{gathered}$	이호재	$\begin{aligned} & 2.0 \\ & 4.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & 220,225,223 \\ & 356,352,355 \\ & 535,540,539 \end{aligned}$
	Syed 박지혁	$\begin{gathered} 2.5 \\ 5.0 \\ 10.0 \end{gathered}$	$\begin{array}{lll} 260, & 261, & 265 \\ 405, & 408, & 409 \\ 608, & 610, & 611 \end{array}$
	이정운	$\begin{gathered} \hline 3.0 \\ 6.0 \\ 12.0 \\ \hline \end{gathered}$	$\begin{array}{lll} 296, & 294, & 296 \\ 455, & 453, & 459 \\ 672, & 680, & 673 \end{array}$

Compact Tension Specimen (CT)

- From "Stress Intensity Factors Handbook", Ed, Y. Murakami (1987)

(1) Stress Intensity Factor
[Reference] J.E. Srawley [1], [2]
[Method] Based on boundary collocation results
[Accuracy] $\pm 0.5 \%$ for $0.2 \leq \mathrm{a} / \mathrm{w} \leq 1.0$

$$
\begin{aligned}
& K_{I}=\frac{P}{t w^{1 / 2}} f_{I}(\alpha), \quad \alpha=\frac{a}{W} \\
& f_{I}(\alpha)=\frac{(2+\alpha)\left(0.886+4.64 \alpha-13.32 \alpha^{2}+14.72 \alpha^{3}-5.6 \alpha^{4}\right)}{(1-\alpha)^{3 / 2}}
\end{aligned}
$$

(2) Displacements

Crack opening displacement at load line
[Reference] A.Saxena and S.J.Hudak, Jr. [3]
[Method] Neman's modified boundary collocation techniques
[Accuracy] $\pm 0.5 \%$ for $0.2 \leq \mathrm{a} / \mathrm{w} \leq 0.975$

$$
\begin{aligned}
& \delta_{\ell}=\frac{P}{E^{\prime} t} V_{\ell}(\alpha), \quad \alpha=\frac{a}{W} \\
& V_{\ell}(\alpha)=\left(\frac{1+\alpha}{1-\alpha}\right)^{2}\left(2.1630+12.219 \alpha-20.065 \alpha^{2}-0.9925 \alpha^{3}+20.609 \alpha^{4}-9.9314 \alpha^{5}\right)
\end{aligned}
$$

THREE-POINT BENDING SPECIMEN

- From "The stress Analysis of Cracks Handbook" Tada, Paris \& Irwin (1985)
(1) Stress Intensity Factor

For $s / b=4$, the following approximate formula is valid for any $a / b=A$ within 0.5%

$$
F(a / b)=\frac{1}{\sqrt{\pi}} * \frac{1.99-A(1-A)\left(2.15-3.93 A+2.7 A^{2)}\right.}{(1+2 A)(1-A)^{3 / 2}}
$$

Reference : Srawley 1976
(2) Additional Load Point Displacement due to Crack

$$
\Delta_{\text {crack }}=\Delta
$$

following formula has better than 1% accuracy for and a / b. $\mathrm{s} / \mathrm{b}=4$:

$$
V_{2}(a / b)=\left(\frac{a / b}{1-a / b}\right)^{2}\left\{5.58-19.57(a / b)+36.82(a / b)^{2}-34.94(a / b)^{3}+12.77(a / b)^{4}\right\}
$$

Method : Paris's equation (Paris 1957) (See Appendix B)
Reference : Tada 1973

